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Abstract 

The consistency between Bloch-wave and multislice 
approaches to calculating high-energy electron 
diffraction is investigated in both transmission and 
reflection cases, the emphasis being upon the latter. 
It is first shown, in more detail than previously pub- 
lished, that in transmission the two yield identical 
results. Next, the Bloch-wave approach for reflection 
is shown to yield a stationary solution in multislice, 
except for a small effect from the surface truncation. 
It is pointed out that the multislice approach can be 
exploited to solve exactly for the reflected wave for 
an arbitrary surface potential by using it as a Picard 
iteration solution of the Schr6dinger equation. The 
surface potential scattering is not incidence-angle 
related and is not significant as might be expected. 
The introduction of absorption improves the con- 
sistency between the two methods. Finally, the 
stationary solutions are compared with solutions 
obtained using a top-hat incident wave. The latter 
approach leads to partially stationary solutions, 
although it is very hard to identify these. 
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I. Introduction 

The history of surface investigations by reflected high- 
energy electrons can be traced back to the early 
development of electron diffraction. It has developed 
both theoretically and experimentally in different 
directions: imaging (RHEEM), diffraction (RHEED) 
and electron energy-loss spectroscopy (RHEEL). The 
combination of these techniques promises to be a 
powerful tool for studying crystal surface structures, 
particularly for in situ study of molecular beam epi- 
taxy (MBE) by RHEED (Harris, Joyce & Dobson, 
1981a, b; Wood, 1981) and surface inhomogeneities 
by RHEEM (Cowley & Nielsen, 1975; Osakabe, 
Tanishiro, Yagi & Honjo, 1981; Hsu, 1983; Hsu & 
Cowley, 1983, etc.). 

With the development of experiments in this field, 
tremendous efforts went into the development of a 
dynamical theory. Not long after Ewald (1917) first 
established the dynamical theory for X-ray diffrac- 
tion, Bethe (1928) developed the dynamical theory 
for electron diffraction in a crystal, in which the 
reflection geometry was briefly discussed. With the 
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12 BLOCH WAVES IN TRANSMISSION AND REFLECTION DIFFRACTION 

development of electron-microscope techniques in 
the late 1950's, the Bethe theory (also called Bloch- 
wave theory) was widely applied in transmission elec- 
tron microscopy (Whelan & Hirsh, 1957; Kato, 1952; 
Fujimoto, 1959). Theoretical development for the 
reflection case (both RHEED and RHEEM) has been 
rather slow. In 1954, Miyake, Kohra & Takagi applied 
the Bethe formulation to explain the anomalous 
enhancement of specular reflection in RHEED. 
Several years later, Kohra, Mokiere, Nakano & 
Ariyama (1962) used a similar method to calculate 
the intensity of the specular reflection from a single- 
crystal surface for a finite number of beams, trying 
to interpret anomalous intensities in RHEED. In both 
of these studies, the problem of determining the 
excited wave points in the crystal was discussed. 
However, how to choose the wave points in the gen- 
eral case, which is important for calculations with a 
large number of beams, was not given. In the early 
1970's, Coleila (1972) and Moon (1972) attempted to 
extend the Bethe formulation to n-beam dynamical 
RHEED. To avoid the problem of determining 
excited wave points, they considered the crystal as a 
slab which had a finite thickness. Very recently, we 
introduced the argument of current flow for the 
reflection case (Marks & Ma, 1988; Ma & Marks, 
1989) and cleared up the confusion around the 
wave points in the band gap (evanescent wave) 
and the wave points which are not excited in the 
crystal and were able to solve the general n-beam 
problem. 

However, the basic limitations in the Bloch-wave 
method are not removed so easily; when a large 
number of beams is used, the computation speed is 
slow, and the method is also not readily available to 
simulate surface defects. Various alternative methods 
have therefore been proposed. The column approxi- 
mation was introduced by Shuman (1977), where the 
column is taken to be normal to the surface and the 
beam. The validity of the approximation has been 
proved to be very limited. Later, by making use of 
the 'slice concept',  Maksym & Beeby (1981, 1982) 
and Ichimiya (1983) developed a multislice dynami- 
cal theory for the reflection case, in which thin slices 
of the crystal are taken to be parallel to the crystal 
surface. This method is suitable for surface-layer 
defects parallel to the surface, such as stacking faults 
and surface potentials. Very recently, Peng & Cowley 
(1986) utilized a multislice method with slices perpen- 
dicular to the surface. This approach is apparently 
suitable for various crystal defects because the poten- 
tial of each slice can be constructed with high flexibil- 
ity. However, the difficulty is that the incident wave 
is taken as a top-hat function (with smooth sides) 
that is allowed to impinge upon the surface, and it 
is hard to reach a stationary solution (as dictated by 
the symmetry in reflection) since the size of the input 
incident wave is limited and edge effects are unavoid- 

able. The computation speed is slow when the 
incident-beam number is large. 

Each of the above methods has its own problems 
and limitations, but, theoretically, they should be 
consistent with each other. This suggests that it is 
possible to combine different methods and provide a 
much more powerful approach. In addition, investi- 
gation of the consistency "between different methods 
and the conditions for this provides a clear-cut mutual 
proof of both methods and may reveal more physical 
information about the interaction of electrons with 
crystals. 

In this paper, we report the results of combining 
the Bloch-wave and multislice methods (slices normal 
to the beam) for reflection diffraction. Firstly, we 
discuss consistency between the two in transmission 
diffraction, a necessary precursor to the reflection 
problem. Next, we show that the Bloch-wave 
approach yields a stationary solution for the multi- 
slice, albeit with a small effect from the surface trunca- 
tion. In the process, it is pointed out that the multislice 
method can be exploited as a Picard iteration to yield 
an exact solution for arbitrary surface potentials. 
Finally, we compare these results with the results 
obtained using the approach of Peng & Cowley 
(1986). 

i i .  Numerical  method 

The scheme of the program combining the Bloch- 
wave and multislice approaches is shown in Fig. 1. 
The program consists of two blocks: one for the 
Bloch-wave calculation and the other for the multi- 
slice calculation. The Bloch-wave calculation for the 
reflection case has been discussed in detail previously. 
The multislice calculation is based on the multislice 

Xo(R) ",, / Zero Laue-zone 
• ~ for THEEM 

, " i;-: 

Zero L o u ~  
zone for 
RHEEM 

. ~ o ° ° . - - |  . . . . . .  

Fig. 1. The scheme of  the p rog ram combin ing  the Bloch-wave and 
multislice approaches .  Xo(R) denotes  the incident  wave vector  
in the reflection case and Xo(T)  denotes  the incident wave vector  
in the t ransmiss ion case. The zero Laue zones for the two cases 
are pe rpend icu la r  to each  other. 
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programs developed by one of us (LDM), which is 
currently used for high-resolution THEEM simula- 
tion at Northwestern University. (The same programs 
in an earlier form were modified by Peng for multislice 
reflection calculations.) The Bloch-wave block can be 
operated in both THEEM and RHEEM modes, the 
only difference being the angle of the incident beam 
with respect to the crystal surface. The input of the 
multislice block is the output from the Bloch-wave 
block. 

III. Consistency in THEEM 

Prior to combining the two approaches for reflection 
diffraction, one should know whether they are con- 
sistent or not; at what stage they are; and for what 
conditions they are. In addition, the investigation can 
also offer information about the reliability of the 
programing. We will briefly present our results here 
which confirm the earlier work of Self, O'Keefe, 
Buseck & Spargo (1983), although we will provide a 
little additional detail. 

Fig. 2 shows plots of the amplitude and phase of 
the (100), (200) and (440) beams versus thickness for 
gold along [001] using 100 keV electrons. A couple 
of points should be clarified: 

(i) The oscillation periodicities of both the ampli- 
tudes and the phases for different beams in our result 
are systematically a little smaller than those reported 
by Self et al (1983). We suspect that this may be due 
to different ways of calculating the scattering factor. 
In our calculation the parameters for X-ray scattering 
factors are used. The error arising from this term was 
recently discussed by Peng & Cowley (1988). 

(ii) The sign of the phase in our plots is opposite 
to that of Self et al. (1983); this is possibly due to a 
different choice of zero reference point - we have 
taken the (000) beam as the reference point. 

(iii) The number of beams for both methods does 
not include the forbidden beams for the f.c.c, struc- 
ture; therefore, for the case of the 3 x 3 beam, the 
actual number of beams calculated is 5 × 5 in the 
multislice calculation. 

(iv) The differences between the matrix method 
and the multislice method are significant when only 
a small number of beams are included in the calcula- 
tion. As Self et al. (1983) pointed out, the reason for 
those differences is mainly the different normaliz- 
ation. For this reason, the multislice wave field is 
normalized at each slice. 

(v) In order for the two methods to agree, it is 
necessary that the potential should be the same for 
both. For this reason we have ignored all higher-order 
Laue-zone diffraction in both methods, using only 
the potential obtained by projecting along the beam 
direction. As is well known, this may be a severe 
approximation but otherwise the Bloch-wave compu- 
tations would be unreasonably slow. 

It is important to verify the convergence of both 
methods. Fig. 3 shows the charge density at various 
depths for both methods as a function of the number 
of beams used. Fig. 3 clearly shows that the con- 
sistency between the Bloch-wave solutions with 13 × 
13 beams and the multislice solutions with 21x21 
beams is significantly better than that between the 
Bloch-wave solutions and the multislice solutions 
both with 13 x 13 beams. To be more quantitative, 
Fig. 4 shows plots versus thickness of a parameter 
R ( t ) ,  where R ( t )  is defined as 

~, [ lb,(x, y ) -  1,,,j(x, y)]2 

R#( t ) = x,;, ( 1 ) 
• E lbi(x, y)2 , 

x,) . '  

where lbi and lr, j denote the intensities calculated 
from the Bloch-wave method and the multislice 
method independently, t is the thickness, and the 
subscripts i and j denote the number of beams. The 
curves show that when the number of beams is larger 
than 11 × 11 the quantitative agreement is excellent. 
(It is worth pointing out that in order to obtain this 
agreement some attention had to be paid to reducing 
numerical errors in the Bloch-wave calculations.) Fig. 
5 shows values of a convergence parameter C ( t )  
versus thickness for different numbers of beams, 
where C ( t )  is defined as 

I q~,, (x, y ) -  q~, (x, Y)I 

C~.( t )  = ' "  (2) 
E I c l ' m ( x , y ) + ~ , ( x , y ) [  ' 
x. y 

where q~,,, and q~,, denote the amplitude at each point 
in the image, and subscripts m and n denote the 
number of beams for the calculation. The result shows 
that the magnitude of C,~;,~(t) for the Bloch-wave 
calculation is close to the magnitude of C,~,~( t )  for 
the multislice calculation. This means that the Bloch- 
wave calculation converges at a smaller number of 
beams than the multislice. The curve C{~;~(t) demon- 
strates that the multislice calculation converges well 
enough when the number of beams is larger than 
17 × 17. [The monotonic increase of C ( t )  with thick- 
ness is due to numerical error accumulation.] 

IV. Consistency in reflection 

In reflection it is difficult to investigate the consistency 
between the Bloch-wave method and multislice iter- 
ations since it is difficult to obtain and verify a station- 
ary solution from the multislice calculation. However, 
the wave field both inside and outside the crystal in 
the plane parallel to the zero Laue zone should be 
constant if the azimuth of the incident beam with 
respect to any symmetry plane passing through the 
Laue-zone axis is zero. This provides an alternative 
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way of studying the consistency in the reflection 
mode: using a symmetric incidence condition and 
taking the output wave from the Bloch wave as the 
input wave for the multislice block. However, there 
are basic differences between the Bloch-wave and 
multislice methods. One is a methodical difference 
and another is due to the surface truncation, i.e. a 
zero-surface-potential approximation in the Bloch- 
wave calculation. The analytical investigation of the 
methodical relation between the two methods due to 
lshizuka & Uyeda (1977) is valid for both cases. 
However, for the special case of reflection it merits 
further discussion since it turns out that we can exploit 
the multislice method to provide an exact solution 
including all the effects of the surface truncation. 

To derive the important relationships, we start by 
considering the integral form of the Schr6dinger 
equation: 

0(r)  = exp ( ik .  r) 

+ ( -  2 m / h  2) J G ( r -  r') V(r ' )0(r ' )  dr' (3) 

where 

G ( r - r ' ) - -  exp ( i k l r -  r ' l ) / I r -  r'l (4) 

is the Green function, k is the wave vector of the 
incident electrons, V(r) the potential energy. 
Equation (3) can be expressed as: 

O(r) = O(q, z ) =  .[ O(qo, zo)Pr(q-qo, z -  Zo) dqo 

+ ( -  i /hv)  :J V(q', z')q/(q', z') 
zo  

x P,(q - q ' ,  z - z') dz' dq', (5) 

where q = (x, y) is perpendicular to the incident wave 
vector k, i.e. the z axis, and 

P,(q, z) = exp [ikz(1 + q 2/z2)~/2]/iAz(1 + q12/z2) ~/2 

(6) 

is the Rayleigh-Sommerfeld propagator (Gaskill, 
1978) which is also used in the multislice method. (It 
should be noted that although we are using z as the 
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Fig. 2. Plots of the amplitude and phase of the (100), (200) and (440) beams v e r s u s  thickness for gold along [001] in the transmission 
case using 100 keV electrons: (i)-(vi) show the results for different numbers of beams and each diagram in (i)-(vi) contains two 
curves for the same condition calculated by the two methods separately. (a), (b) and (d) are plots of the amplitude of (100), (200) 
and (400) beams and (c) and (e) are plots of the phase of (200) and (400)• 
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(a) (c) (e) (g) 

(b) (d) ( f )  (h) 

II X II 

13X 13 
(i) 

Fig. 3. Current density outputs at various depths for (i) the Bloch-wave method and (ii), (iii) the multislice method as a function 
of the number of beams in the transmission case. The thicknesses from (a) to (h) are: 20.2, 40.5, 121.5, 162-0, 202.5, 243.0, 303.7, 
324.0 .~. 
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I I X I I  

13 X 13 
(ii) 

Fig. 3 (cont.) 
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(a) (c) (e) (g) 

(b) (d) (f) (h) 

17 X 17 

2 IX  21 
(iii) 

Fig. 3 (cont.) 
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beam direction here, later on in the paper we will use 
z as the vector normal to the surface in reflection.) 
Equation (5) is a standard Volterra integral equation 
of the second kind, which can be solved by the Picard 
iteration method. It always converges over a suitable 
interval (zo, z). 
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Fig. 4. Plots o f  the consistency parameter  R versus thickness for 
different numbers  of  beams in transmission. 
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Fig. 5. Plots of  the convergence parameter  C versus thickness for 
different numbers  of  beams in transmission; (a)  for  the conver-  
gence of  the Bloch-wave method  and (b) for convergence  of  the 
multislice method.  

By using the Margenau & Murphy method 
(Ishizuka & Uyeda, 1977), (5) can be further sim- 
plified as follows: 

d/(q, z) = ~ exp { (- i/ hv) i V(q', z") dz"} 
Zo 

×d/(q',z)P,(q-q',z-zo)dq', (7) 

i.e. 
~(q,z)=[qJ(q, Zo).Pg(q,Z-Zo)]* P,(q,z-Zo), (8) 

where 

Zo 

and * represents a convolution. When z -  zo is small, 
we can rewrite (8) as 

qJ(q,z+dz)=[qJ(q,z).Pg(q, dz)], P~(q, dz). (10) 

This is simply the multislice formulation due to 
Cowley & Moodie (1957)" 

~b(q,z,,+,)=[~b(q,z,).Pg(q,z,)]. P~(q,z,). (11) 

When V(q, z) varies slowly in the z axis in the range 
(Zo, z), we can also approximate (8) as 

~b(q,z)=[~(q,z).Pg(q,z-zo)]* P~(q,z-zo). (12) 

The solution of (12) is the wave field independent of 
z at (Zo, z) and can be solved by the Picard iteration 
method" 

qJ(q, z ) =  lim qJ,+,(q, z), (13) 
n ...b o o  

where 

qJ,+,(q, z ) =  [~b,,(q, z ) .  Pg(q,z-zo)]* P,(q,Z-Zo). 
(14) 

Equation (12) shows how to obtain the wave field at 
(q, z), if both the wave field and potential vary slowly 
along the z axis at (z, z + d z ) ,  while (13) solves the 
wave field at (q, z + d z ) ,  if the wave field at (q, z) and 
the potential at (z, z + d z )  are known. They are 
equivalent under certain conditions, particularly if 
the potential has an infinite periodicity along the z 
axis and if the wave field is independent of z at 
(z, z+dz ) .  These are satisfied in the reflection with 
symmetric incidence, so that solving the wave field 
at a thickness deep enough for a multislice iteration 
is equivalent to solving the true solution of the 
Schr/Sdinger equation by the Picard iteration. 

The important point here is that the variation of 
wave field during the muitislice iteration not only 
indicates the degree of the consistency between the 
two methods, but also reveals the extent of the conver- 
gence to the true solution of the crystal potential with 
the surface potential in the reflection case. If the 
solution is stationary, it is the exact solution. Later 
this will be demonstrated numerically. 
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The unit cell set up for a Bloch-wave calculat ion 
in the reflection case is not very different from that 
in transmission. The only difference is that, to reduce 
the effect of  the surface truncation, the surface should 
be between the atomic planes rather than in the atomic 
plane. To achieve this, the boundary  is fixed at zero 
and the unit cell is moved into the crystal along the 
z axis by a quarter of  the c spacing as shown in Fig. 
6(a).  (Note that hereon we are using the convent ional  
notation of the z axis as normal to the surface.) The 
one-dimensional  potential plotting along the z axis 
shows the deviation of the surface potential in the 
Bloch-wave mode from that in the real crystal surface. 
To be consistent with the unit-cell set up for the 
surface s imulat ion in a multislice calculation, the 
wave field is constructed in a large unit cell, which 
has a size of  16a x l a  (a denotes the magni tude  of 
the primitive vector of the conventional  unit cell of  
gold, and the wave fields are displayed in the size 
8ax2a).  In the case with no absorption,  the right 
half  of the cell is for the Bloch wave, i.e. the crystal 
wave in the crystal, and the other half  for the vacuum 
wave, i.e. the reflected wave. When an absorpt ion of 
10% is included,  the crystal wave damps rapidly in 
the crystal and the surface can be set further towards 
the right. Here we set the surface position such that 
the crystal wave is in a quarter of  the unit cell on the 
right, and the reflected wave in three quarters of  the 
unit cell on the left. This can further reduce edge 
effects in the multislice calculation. For the multisl ice 
part, the unit cell is s imilar  to that used in profile 
imaging and has the same size as the unit cell for the 
Bloch wave, 16a x la ,  al though the wave is also dis- 
played in the size 8a × 2a (Fig. 6b). Each atom in a 
slice was moved a distance of a/4 into the crystal to 
align the atom positions. The full unit cell is projected 
along [010] and then subdivided into four identical  
slices, each containing one fourth portion of the pro- 
jected ~otential of  the full cell and of  thickness 
1.0128 A. The size of the sampling array for the multi- 
slice calculat ion is 1024 x 64. 

(a) (b) 

Fig. 6. The unit-cell set up and potential profile for both (a) the 
Bloch-wave block and (b) the multislice block. For the Bloch- 
wave block, the unit cell is the primitive unit cell and the wave 
is constructed in the larger unit cell as used in multislice. The 
difference with and without surface truncation is shown in the 
potential profiles. 

In the following sections we will analyze the results 
as a function of the incident  angle, number  of beams 
and absorption.  All the following calculations were 
performed for 100 keV electrons. 

IV. 1. Effect of absorption 

To investigate the consistency and convergence of 
the solution, a deviation parameter  was defined as 

~, [ I,(x, y ) -  lo(x, y)]2 

D(t) =~'y , (15) 
Z lo(x, y)2 
x,.v 

where Io denotes the intensity of the wave field calcu- 
lation by the Bloch-wave method and I, the intensity 
of the wave field output from the multislice calcula- 
tion. The magni tude of D( t )  reflects the consistency 
while the derivative of D(t), dD(t)/dt ,  indicates the 
convergence of  the solution. We also apply  an 
intensity analysis  by using the convergence parameter  
defined by (2) in the reflection case. In order to avoid 
undesirable  edge effects, the intensity analysis is only 
applied to the central ha l f  of the wave field for the 
case with no absorpt ion and to the right ha l f  for the 
case with absorption. We will adopt the convention 
of referring to the output of the Bioch-wave program 
as the thickness t = 0. 

Fig. 7(i) shows the current density output at 
different thicknesses up to 607.5 A for an incident  
angle of 25 mrad;  absorpt ion is not included.  The 
beam geometry is: the (010) zone is taken as the zero 
Laue zone; the surface normal is coincident  with the 
z axis; the incident-beam azimuth with respect to the 
yz plane is zero. The plane of the figure is parallel  to 
the zero Laue zone. The number  of beams calculated 
in the Bloch wave is 13x 13, in reciprocal space 
± 2 x  ±2 A. Fig. 7(ii) shows plots of  the deviat ion 
parameter  D versus thickness, while Fig. 7(iii) shows 
plots of  the convergence parameter  C, where (R.W.) 
denotes the reflected wave, (B.W.) the Bloch wave in 
the crystal and (T.W.) the total wave. The first slice 
in Fig. 7(i) is the wave-field output from the Bloch- 
wave calculat ion which is taken as the reference thick- 
ness: t = 0. The spacing between the two closest slices 
is 50 ~,. 

For absorption,  we appl ied the commonly  used 
phenomenologica l  treatment for both the Bloch-wave 
calculations and the multisl ice calculations. The crys- 
tal potential in reciprocal space is taken as complex 
with an imaginary  part equal to 10% of the real part. 
Fig. 8 shows the results for the same condit ions as 
for Fig. 7, except that an absorption of 10% is 
included. Compar ing  Fig. 8 with Fig. 7, one can easily 
see that the wave field in the crystal decays sharply 
for the case with absorption,  while it extends deep 
into the crystal for the case without absorption.  
However, the reflected wave is not affected seriously 
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Fig. 7. (i) Current density outputs at different thicknesses for 25 mrad incidence, for 13 x 13 beams and no absorption. The spacing 
between the two closest slices is 50 ~, and the unit cell used in the calculation is 16a x la, but is displayed as 8a x2a.  (ii) Plots of 
the deviation parameters D versus  thickness for current density outputs in (i). (iii) Plots of the convergence parameters C versus 

thickness for current density outputs in (i). (R.W.) denotes the reflected wave, i.e. the vacuum wave, (B.W.) the Bloch wave in the 
crystal, i.e. the crystal wave, and (T.W.) the total wave. 
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Fig. 8. (i) Current density outputs at different thicknesses for 25 mrad incidence, for 13 x 13 beams and an absorption of 10%. The 
spacing between the two closest slices is 50,~, and the unit cell used in the calculation is 16a x la, but is displayed as 8a x2a.  (ii) 
Plots of the deviation parameters D v e r s u s  thickness for current density outputs in (i). (iii) Plots of the convergence parameters C 
v e r s u s  thickness for current density outputs in (i). 
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by the absorpt ion as far as the appearance  of  the 
images is concerned.  The corresponding plots of  D 
and C against slice thickness shown in each figure 
indicate that including absorpt ion can greatly 
improve the consistency and convergence as men- 
t ioned before. This is largely due to the reduction of  
edge effects. The crossover points in Figs. 7(ii) and 
(iii) at about  500 ,~, indicate that the edge starts mov- 
ing into the analyzed area. The edge has more serious 
effects on the reflected wave than the crystal wave. 
Fig. 8(ii) shows that the D parameters for the three 
waves converge to 0.5% after 600 slices, while Fig. 
8(iii) shows that the convergence of the C parameter  
for the crystal wave is a little better than that for the 
reflected wave, which is main ly  due to the difference 
of  the edge effects on two parts. The C parameter  
can never be zero even if  consistency and convergence 
are achieved, since numerical  errors can never be 
completely el iminated.  The reason for the larger scale 
for C compared  to D is that C is a first-order param- 
eter while D is a second-order  parameter.  The plots 
of  D and C parameters for the crystal wave quite 
often start worse and end better, compared to that 
for the reflected wave. This can be expla ined as fol- 
lows: methodical  errors are more important  at the 
start but later these fall off and numerical  errors 
become important .  The former is usually larger than 
the latter. 

IV.2. Effect of the number of beams 

When the number  of beams calculated in the Bloch 
wave is changed,  both the consistency and conver- 
gence will be affected. Figs. 9 and 10 show the results 
for the same condit ions as in Fig. 8, except for a 
decrease in the number  of beams from 13 x 13 to 9 x 9 
and 11 x 11, respectively. The images do not look very 
different from those for 13 x 13 beams. Nevertheless,  
the D and C parameters clearly indicate the effects 
of  the number  of beams,  al though these are not very 
significant. Fig. 9(ii) shows that the D parameters for 
the reflected wave and the total wave for the 9 x 9 
beams case do not converge well, al though that for 
the crystal wave is not affected significantly, increas- 
ing from 0.5 to 0.55%. The behavior  of  the D and 
C parameters  for all three waves for 11 × 11 beams 
is significantly better than for 9 x 9  beams. The D 
parameter  for the reflected wave for 11 x 11 beams 
converges to 0"3%, which is 30% smaller  than for 
the 9 x 9 beams.  The reduction also occurs in the C 
parameter.  It is interesting that the results for 11 × 11 
beams are even a little better than for 13 x 13 beams. 
This may be expla ined as a consequence of numerical  
errors in the Bloch-wave calculation which increase 
with the number  of beams,  since the number  of calcu- 
lations increases with the square of the number  of 
beams. This also shows that the number  of beams in 
the Bloch-wave calculation required for consistency 

and convergence for the reflection case is s imilar  to 
that for the t ransmission case: about 11 x 11. 

IV.3. Effect of incidence angle 

Figs. 11, 12 and 13 show the results for the same 
condit ion as in Fig. 8, except that the incidence angles 
have changed from 25 to 10, 30 and 35 mrad,  respec- 
tively. A noticeable feature of the wave field for small  
incidence angle (10 mrad) is that it concentrates in 
the top layer; note also that there is a low electron 
intensity gap between the top atoms and the vacuum 
wave for 10 mrad incidence. It should be pointed out 
that this surface channel ing  is not the result of  the 
absorpt ion since the calculat ion with no absorpt ion 
gives similar  results; the wave field is also concen- 
trated on the top layer. The magnitudes of both D 
and C parameters  of  the reflected wave and the total 
wave for 10 mrad incidence decreased considerably 
and these curves converge at 600 ~,. However, the 
magni tudes  for both D and C parameters of  the 
crystal wave for 10 mrad increase significantly com- 
pared to those for 25 mrad. This is possibly due to 
sharp damping  of the crystal wave, which reduces 
the area available for intensity analysis. The magni- 
tudes o fbo th  the D and C parameters for the reflected 
wave and total wave for 30 and 35 mrad incidence 
shown in Figs. 12 and 13 appear  not to be affected 
by the change of incidence angle, al though the D 
parameters for the reflected wave and total wave for 
the two incidence angles do not converge so well at 
600 ~,. Nevertheless, the magnitudes of the D param- 
eters of the crystal waves in these two cases increase 
significantly with the incidence angle and the D 
parameter  of  the crystal wave  for 35 mrad incidence 
fails to converge at 600 A and the magni tude of it is 
larger than 2% at the same thickness. It appears  that 
the larger the incidence angle is the worse the con- 
sistency and convergence are. There are two reasons 
for this. First, in the multislice calculation, the 
approximat ion  is generally made that the phase grat- 
ing does not vary with small  changes of the incidence 
angle and all effects of  the changes of incidence angle 
are included in the propagator.  This error mainly  
affects the consistency and convergence of the crystal 
wave. Second, when the incidence angle increases, 
the interaction between the electron wave in the 
vacuum and the surface potential becomes more 
important;  this mainly  affects the consistency and 
convergence of the reflected wave and will be dis- 
cussed later. 

IV.4. Effect of surface potential 

If one studies the wave field in vacuum in Figs. 7, 
8 and 9 a little more closely, one can observe a slight 
difference between the vacuum wave (i.e. reflected 
wave) in the first slice and that in the consequent  
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Fig. 9. Corresponding results under the same conditions as for Fig. 8, except that the number of beams in the Bloch-wave calculation 
is 9x9.  
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Fig. 10. Corresponding results under the same conditions as for Fig. 8, except that the number  of beams in the Bloch-wave calculation 
is l l x l l .  
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Fig. ] ]. Corresponding results under the same conditions iis for Fig. 8, except that the incidence angle is 10 mrad. 
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Fig. 12. Corresponding results under the same conditions as for Fig. 8, except that the incidence angle is 30 mrad. 
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Fig. 13. Corresponding results under the same conditions as for Fig. 8, except that the incidence angle is 35 mrad. 
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slices. The analysis of  both D and C parameters  of  
the vacuum waves has already shown the deviat ion 
of the solutions in the multisl ice s imulat ion from the 
Bloch-wave solutions. The major  part of  the deviat ion 
is due to the artificial surface truncation in the Bloch- 
wave calculation. However, the effects of  the surface 
truncation in the Bloch-wave calculation is much 
smaller  than we expected, which is consistent with 
the results of  Howie (1988), but contrary to the con- 
clusion by Britze & Meyer-Ehmsen (1978). This merits 
further studies. 

The arguments  given at the beginning of this 
section analyt ical ly  proved that the multislice iter- 
ation in our case is actually equivalent  to the Picard 
iteration for numerical ly  solving the true solution of 
the SchrOdinger equation in integral form. This means 
that the iteration must converge to the true wave field 
in the potential  without surface truncation in the 
reflection case since the surface potential is automati-  
cally included in the phase grating in multisl ice calcu- 
lations. The small effect of  the surface truncation in 
the Bloch-wave calculation results in a much faster 
converging speed in multislice calculation, which 
leaves more room for the s imulat ion of surface 
features. 

As ment ioned before, the first slice (t = 0) is the 
Bloch-wave solution which plays two roles here: (1) 
the incidence wave field in muitislice iteration; (2) 
the initial wave field in the Picard iteration. It is 
obvious that the deviation should first emerge in the 
area close to the surface and then become stable and 
gradually spread out with increasing thickness, since 
the surface potential decays exponent ia l ly  with 
increase of the distance from the surface. In other 
words, the convergence regarding the effects of  sur- 
face potential (since the accumulat ion of numerical  
errors during the muitisl ice iteration is unavoidable  
the convergence cannot be considered as exclusively 
perfect) should also first emerge in the area close to 
the surface. To demonstrate  this more clearly, the 
square of the differences between the two nearest 
slices, F,.,,_ i(q) = [0(q,  Y,,) - 0(q, y,_,)]2 were studied 
by projecting F,. ,_,(q) onto the z axis. In the co- 
ordinate system we use here, the incidence vector is 
along the y axis and the z axis points into the crystal 
surface. The projected intensities of F,,.,,-i(q) against 
z for 25 and 30 mrad incidence are shown in Figs. 14 
and 15 respectively. A peak occurs just at the surface 
in the first curve of F , .n  ,(q) in each case, as the initial 
wave is scattered by the surface potential. The peak 

J• i ,, 

. _ ~ A _../k_ 

Fig. 14. Plots of the projected intensity of F, . ._ t (q)  versus thickness. Each curve is calculated from the two closest slices in 
Fig. 8, and the incidence angle is 25 mrad. 
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gradually moves out and the range with a flat and 
low intensity gradually increases with the iteration n 
or slice number m. This becomes clear for r n > 5  
(n > 250), i.e. after the fifth curve in Fig. 15. The 
multiple peaks in the curves of F, , ,_~(q )  with 5 < m < 
11 are probably due to either oscillatory convergence 
of the Picard series, similar to the convergence of the 
Fourier series, or the accumulation of numerical error. 
They finally decay to a series of small modulations. 
One important feature in Figs. 14 and 15 is that the 
convergence of the Bloch wave in the crystal is well 
preserved. 

The present results show that the effects due to the 
surface potential on the vacuum wave are not 
incidence-angle related. The magnitudes of both D 
and C parameters of the vacuum waves in Figs. 8, 
11, 12 and 13 do not show any clear trend with 
increasing incidence angle. This appears to be 
contrary to what one might expect; the surface-poten- 
tial effects should become more serious for larger 
incidence angle because of the stronger interaction 
between the larger components normal to the surface 
of the electron wave and the surface potential. This 

is worth further study both experimentally and 
theoretically. 

V. Comparison with the solution in multislice only 

When the program is shifted to the reflection-multi- 
slice-only mode, we obtain the results shown in Figs. 
16(i), (ii) where (i) is the result without absorption 
and (ii) is the result with an absorption of 10%. Here 
we are following Peng & Cowley's (1986, 1988) treat- 
ment: a plane wave smoothed by a Gaussian function 
tilted towards the crystal surface is introduced into 
the left part of the unit cell in the vacuum. The tilt 
angle is 25 mrad. Both the wave reflected from the 
crystal and the wave penetrating into the crystal in 
(d),  (e) and (f) at the areas which are close to the 
crystal surface have some correlation with the true 
stationary solution in Fig. 7, although the deviation 
is still obvious. Owing to the edge effects, it appears, 
however, that the solution is unstable. If absorption 
is introduced [Fig. 16(ii)], the result is not much 
better. 

. . . .  . . l m t L  ~1~._ ~ .  - ~ ~ -  

Fig. 15. Plots of the projected intensity of F,,,_~(q) versus thickness. Each curve is calculated from the two closest slices in 
Fig. 12, and the incidence angle is 30 mrad. 
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VI. Discussion 

We have been able to demonstrate here that the 
Bloch-wave method is close to a genuine solution of 
the dynamical reflection problem, and even though 

there may be some errors due to the effect of neglect- 
ing a surface potential, these can be eliminated by 
using the multislice as a Picard iteration. This feature 
is especially important since it opens up a whole range 
of different ways of calculating reflection problems. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

0 % ; 25  m r a d  
(il 

1 0 %  ; 2 5 m r a d  
(ii) 

Fig. 16. Current density outputs at different thicknesses for 25 mrad incidence in the mulfislice-only mode, with (i) no absorption and 
(ii) 10% absorption. The thicknesses from (a) to ( j)  are: 0, 20.2, 40.5, 81-0, ]62.0, 202.5, 243-0, 283.5, 324.0, 405.0 A. 
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As ment ioned above, the Picard solution is uncondi-  
t ionally convergent,  and we can expect that the speed 
with which it converges will depend upon how near 
the first wave function is to the true solution. The 
results of  intensity analysis  clearly indicate that the 
Bloch-wave solution is quite close to t' ~ true solution, 
and the effects of  surface truncation in the Bloch-wave 
calculation are unexpectedly small. Tberefore, we can 
envisage solving problems involving surface relaxa- 
tions by using a solution generated from a Bloch-wave 
approach and then mult isl icing it to convergence. 
Since the multisl ice is a fast approach,  and even faster 
if one utilizes array processors, this may be an efficient 
method of solving many otherwise intractable 
problems. 

One obvious problem is edge effects; multisl ice is 
not a true numerical  solution since its periodic con- 
t inuation leads to edge effects. One can overcome 
these problems to some extent by using very long unit 
cells as we have done. A more robust and general 
approach is possibly to use patching or some other 
technique to avoid the edge effects. For instance, one 
possibility would be at each slice to force the edge 
of the cell, or a region near the edge, to have the 
same ampl i tude  and phase. This is an area for further 
numerical  research. 

One addi t ional  point that appears to be quite clear 
is that using an incident  top-hat wave function does 
not seem to be a reliable approach.  Without the 
addit ional  informat ion from the Bloch-wave solution, 
we cannot see how one can readily identify when the 
solution is not stationary. It is possible that one could 
stabilize this approach,  avoiding the edge effects, and 
then use the multislice alone to sum the Picard series. 
If this is possible, then this might be a s imple method 
of solving the general reflection diffraction problem 
in a relatively simple conceptual  manner.  

A final point should be mentioned,  which is both 
a proof and a caret. In our original version of  these 
programs there was a numerical  error in the Bloch- 
wave to multisl ice conversion. Even with this error, 
multisl icing still produced convergent results, albeit 

a little slower than in the results presented herein. 
Clearly, the combined  approach is quite robust. 

This work was supported by the National  Science 
Foundat ion through Northwestern University 
Materials Research Center,  Grant  No. 85-20280. 
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